LAB 7 - TASK 12
Database Programming in C

John Dempsey
COMP-232: Programming Languages
California State University, Channel Islands
October 8, 2025
Hard Due Date: October 17, 2025

Task 12. Database

MySQL supports a C application programming interface (API) which allows you to write C programs to run

SQL queries against a MySQL database. Your MySQL database is called classicmodels and is on

comp232.com. The Entity-Relationship Diagram (ER Diagram) for the classicmodels database is seen

below in Figure 1.

MySQL Sample Database Diagram

Figure 1. ER Diagram for the classicmodels Database
1

productlines products orderdetails
* productLine * productCode * orderMumber
textDescription productName * productCode
hitmlDescription H o] productlLine H =" quantityOrdered
image productScale priceEach
productVendor orderLineMumber
productDescription
quantitylnStock E
employees buyPrice
* employeeNumber MSRP -
lastMame orders
oS :E::‘.IE;E: " orderMumber
email orderDate
officeCode customers requiredDate
reportsTo * customerNumber .] shippedDate
jobTitle o o customerMame i+ Sl slatus
contaciLastMame comments
contactFirstame customerMumber
phone
offices addressLine1
* officeCode addressLine2
irid clty payments
phone slate .
addressLine1 postalCode - g customerNumber
“+H addressLine2 country * checkNumber
state salesRepEmployeeMumber paymentDate
country creditLimit amount
postalCode
territary

On your laptop, run:
% mkdir LAB7
% cd LAB7
% sftp john@comp232.com
% cd /home/LAB7
% mget *
% quit
% cat run
gcc client.c -o client "‘mysql_config --cflags --libs’
% mysql_config --cflags
-I/usr/include/mysql
% mysql_config --libs
-L/usr/lib/x86_64-linux-gnu -Imysqlclient -Ipthread -Idl -1z -Iss| -lcrypto -Iresolv -Im -Irt
If you’re a MacOS user, edit your ~/.profile file and add/update the following line:
PATH=$PATH:/opt/homebrew/opt/mysql-client/bin
To compile your client.c program, type:
% run

Running the above run command actual runs the following command:

% gcc client.c -o client -1/usr/include/mysql -L/usr/lib/x86_64-linux-gnu \
-Imysqlclient -Ipthread -Idl -Iz -Issl -Icrypto -Iresolv -Im -Irt

The client.c program below runs the query:

SELECT officeCode, city, state FROM offices;

The client.c program follows:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mysgl/mysql.h> // MacOS users use: #include <mysql.h>

int main(int argc, char **argv)

{
MYSQL *con;
int count;
int number_of rows;
char query[1000];

MYSQL_RES *result;
MYSQL_ROW row;

printf("\nMySQL client version is: %s\n", mysql_get_client_info());

con = mysql_init(NULL);

if (con == NULL) { // Allocates memory and returns a pointer to MYSQL structure.
fprintf(stderr, "mysql_init() failed.\n");
exit(1);

}

// mysql_real_connect establishes a connection from your client to the database server
// running on comp232.com. The parameters are con for connection, comp232.com
// (or IP address), your user name, your password, the database id, followed by 0, NULL, 0.

if (mysql_real_connect(con, "comp232.com", "class", "CSUClcomp232S", "classicmodels",
0, NULL, 0) == NULL) {
fprintf(stderr, "%s\n", mysql_error(con));
mysgl_close(con);
exit(1);
}

printf("The connection is open.\n"); // The connection was successful.
// Query 1: SELECT officeCode, city, state FROM offices;
strcpy(query, "SELECT officeCode, city, state FROM offices");

if (mysqgl_query(con, query) !=0) // mysql_query runs the query.

3

{
printf("Query failed.\n");
printf("%s\n", mysql_error(con));
exit(1);

}

result = mysql_store_result(con); // mysql_store_result returns buffered results from query.
printf("Number of rows: %ld\n", (long) mysql_num_rows(result));

count=1;

while((row = mysql_fetch_row(result)) != NULL) {
printf("%2d. ", count);
printf("officeCode = %s, ", row[0]);

printf("city = %-15s, ", row[1]);
printf("state = %s\n", row[2]);
count =count + 1;
}
printf("\n\n");
mysql_free_result(result); // mysql_free_result frees memory used by buffered results.
mysql_close(con); // mysql_close closes the connection to the server.

printf("The connection is closed.\n");

john@oho:~/MYSQLS client

MySQL client version is: 8.0.29
The connection is open.

Number of rows: 7

1. officeCode = 1, city = San Francisco , state = CA

2. officeCode = 2, city = Boston , state = MA

3. officeCode = 3, city = NYC , state = NY

4. officeCode = 4, city = Paris , state = (null)

5. officeCode = 5, city = Tokyo , state = Chiyoda-Ku
6. officeCode = 6, city = Sydney , state = (null)

7. officeCode = 7, city = London , State = (null)

The connection is closed.

Your Task

Your task is to copy and update the client.c to implement and display the following results:
Using the classicmodels database, make a copy of client.c to sf.c. Copy run to runsf.

Display the total number of employees.

Display the firstname, lastname, jobtitle, and email for all employees. Order list by firstname.
Use query: select firstname, lastname, jobtitle, email from employees order by firstname
Output for the first few rows will look like:

PwnNPRE

Number of rows: 23

1. Andy Fixter, Sales Rep, afixter@classicmodelcars.com

2. Anthony Bow, Sales Manager (NA), abow@classicmodelcars.com
3. Barry Jones, Sales Rep, bjones@classicmodelcars.com

4. Diane Murphy, President, dmurphy@classicmodelcars.com

FsS (0 A R

SAVE OPEN SPACE & AGRICULTURAL RESOURCES

Using the soar database, answer the following question:

Did the Camarillo SOAR collect 10% or more signatures of registered voters needed to
qualify their petition to be placed on the ballot?

To do this task, you’ll need to:

1. Copy run to runsoar

2. Copy client.c to soar.c

3. Change the connection to comp232.com to access the soar database.

4. Run a query to count the number of voters in Camarillo who signed the petition, i.e., query is:
select * from voters_camarillo where signed_flag = ‘Y’

5. Run a query to count the total number of voters in Camarillo.

6. Divide the number of voters who signed the petition divided by total number of voters and

then multiply by 100 to get the percentage.
7. Output should look like if 10% or more of the voters signed the petition:

9999 out of 999999 voters, or 99.99% of all voters, signed the SOAR petition.
SOAR can be placed on the ballot.

To receive credit for LAB 7 TASK 12, run the following two commands:
% sf > task12.txt // Creates task12.txt
% soar >> task12.txt // Concatenates soar output to task12.txt file.

Upload sf.c, soar.c, and task12.txt to comp232.com in your LAB7/TASK12 directory.

